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Introduction 

Early in the 1950’s decade, the economist G.L.S. Shackle had 
once proposed and worked on a non-probabilistic model of expectation but 
his works were not accepted as an alternative to probability theory. In 
1978, professor L.A. Zadeh takes the first step in developing the principle 
and basis of possibility theory as a qualitative mathematical concept 
analogous to probability. He exemplifies the conversational use of these 
terms by noting differences between them. For example, a high degree of 
probability always implies a high degree of possibility but not conversely. 
Also (in appropriate circumstances) probabilities add, but this is not the rule 
for possibilities.  

To understand the difference between “Probability and Possibility” 
let us see some simple examples: 
Example 1 

 Let us consider a house with only one door and one window. The 
possibility of a thief entering the house is the maximum of the probabilities 
of entering through the door and through the window. The probability of a 
thief entering the same house is the sum of the probabilities of entering 
through the door and through the window (since he cannot enter through 
both). Hence, the possibility and probability of a thief entering the house 
are clearly different. However, the possibilities of entering through the door 
and through the window can respectively be interpreted as the probabilities 
of two random events: 
A = {the thief is able to enter through the door} 
B = {the thief is able to enter through the window} 

Hence, the possibility of a thief entering the house can be 
interpreted as the maximum of the probabilities of events A and B, or what 
is the same, as the probability of the most likely of these two events. 
Example 2  

Consider the following statement: 
 “Navya ate X mangoes yesterday” with X taking values in N = {1, 
2, 3… 8}. 
 We can associate a possibility distribution Ch (n) with N as the 
degree of ease Navya can eat n mangoes and we can also associate a 
probability distribution P (n) as she is eating a day. Then the values of Ch 
(n) and P (n) can be shown as: 
Table1. 

N 1 2 3 4 5 6 7 8 

Ch (n) 1 1 1 1 0.8 0.6 0.4 0.2 

P (n) 0.1 0.8 0.1 0 0 0 0 0 

 From table 1, we find that the possibility that Navya can eat 3 
mangoes is 1 but the probability of the same might be very-very small i.e. 
0.1. 
 Thus, a high degree of possibility does not imply a high degree of 
probability, nor does a low degree of probability imply a low degree of 
possibility.    
 
 

Abstract
L.A. Zadeh takes the first step in developing the principle and 

basis of possibility theory as a qualitative mathematical concept 
analogous to probability. A high degree of probability always implies a 
high degree of possibility but not conversely. Also probabilities can add 
but this is not the rule for possibilities. The function Ch, which to each 
proposition assigns corresponding possibility, is the chance function. A 
set of conditions governing such a chance functions are discussed and 
the necessary consequences of rational betting are shown in this paper.    
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Example 3  

Let us take into account F number of goals 
are admitted by Indian Hockey Team in an 
international match. We infer that F takes the values 
in W = {0, 1, 2, 3, ….. , 7}. Then degree of belief Ch 
(w) with which Indian Hockey Team admits F number 
of goals and probability P (w) with which Indian 
Hockey Team will admit F number of goals can be 
made clear by the following table: 
Table2.  

W 0 1 2 3 4 5 6 7 

Ch (w) 1 1 1 1 1 0.6 0.4 0.1 

P (w) 0.3 0.3 0.2 0.1 0.1 0 0 0 

This possibility and probability distribution can be 
exhibited graphically as follows 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Graph1. Possibility distribution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Graph2. Probability distribution 

 It is clear from the table 2 and graph 1 and 2 
that high value of possibility does not indicate a 
corresponding high probability value but rather shows 
that a probable event is indeed possible and also that 
an impossible event is indeed possible. 
Example 4  

Let us consider the statement 
S: “Kamal is now in Mumbai.” 
The person who admits this statement 

should be willing to pay a penalty of some sort incase 
it turns out to be false. Practically this penalty would 
ethically be loss of face, but for theory we need 
something more definite. For simplicity we take: 

Definition 1 

The person who makes this assertion will 
have to pay a penalty of ₹ 1 if the statement turns out 
to be false i.e. here the commitment is the obligation 
to pay ₹ 1 as fine in case one is proved wrong. 

Suppose Mr. X assert, “In my opinion the 
probability that Kamal is in Mumbai is 0.8.” Then in 
view of the Definition 1 Mr. X will have to pay a fee of 
₹ 0.2 to assert “Kamal is in Mumbai”. At the same 
time he will have to pay ₹ 0.8 to assert “Kamal is not 
in Mumbai”. Reducing it into general terms we have: 
Definition 2 

The person who makes the assertion “The 
probability of S is k (where     0 ≤ k ≤ 1) agrees: 
1. To assert S for a fee of ₹ (1-k ) and 
2. To assert ~S for a fee of ₹ k 

A very cautious person might well (on 
grounds of ignorance) refuse to agree to (i) unless k = 
0 and at the same time refuse to agree to (ii) unless k 
= 1, he can hardly be accused of being irrational for 
adopting this conservative attitude. Thus, the 
probability function of a person may not be defined for 
all propositions. 
The Interpretation of Possibility Statements 

Let us now apply the pragmatic method to 
statements involving the term “possible”. For instance, 
we interpret “There is slight possibility that Kamal is in 
Mumbai” as “the probability (in my opinion) that Kamal 
is in Mumbai does not exceed (say) 0.1”. 

This assertion in view of Definition 2 
indicates willingness for ₹ 0.1 to pay ₹ 1 incase Kamal 
is in Mumbai. This commitment gives the practical 
meaning of the possibility assignment and we can 
adopt: 
Definition 3 

For any proposition S and any agent the 
possibility Ch (S) of S is the smallest number k such 
that for a fee of ₹ k the agent will agree to pay ₹1 if S 
is found to be the case. The function Ch, which to 
each proposition assigns the corresponding 
possibility, is called “possibility function /chance 
function” of the agent. 

Thus, in contrast to the situation for 
probability, the possibility Ch (S) has, for any rational 
agent, a value for every proposition S. Here, “S is 
impossible”, interpreted as “the possibility of S is zero” 
is equivalent to “~S” and “S is entirely possible” 
entails no possibility of loss. Also, there is a close 
relation between possibility and probability. For 
instance, to say “S has probability 0.8” is equivalent to 
saying both “S has possibility 0.8” and “~S has 
possibility 0.2”.  
Properties of Chance Functions 

We shall use the pragmatic explanation of a 
possibility assignment to unfold the formal properties 
of chance functions. In doing this we will discuss the 
relations between the possibilities of logically related 
propositions, e.g. A, not A, B, A and B, A or B, etc. Let 
us assume that we have a Boolean algebra Ɓ of 
propositions. A chance function will then be a real 
valued function defined on this Boolean algebra. 

We have the knowledge of the elementary 
method of representing logical relations among 
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propositions by a Venn diagram: each proposition is 
represented by a set in such a way that intersections 
correspond to conjunctions and unions to disjunctions. 
In fact, this can be done for any Boolean algebra Ɓ: 
according to Stone Representation Theorem there is 
a set τ such that Ɓ may be represented as a Boolean 
algebra of subsets of τ: more precisely, there is a 
topological space τ (a totally disconnected compact 
Hausdorff space) such that Ɓ is isomorphic to the 
Boolean algebra of all closed – open subsets of τ. 
This representation of Ɓ is very convenient in 
discussing the properties of chance functions. 

For practical purposes we may identify each 
proposition with a subset of τ. Then, for any 
propositions A and B, A and B and A or B are the 
intersection    A ∩ B and union   A ∪ B respectively 

and A
c
 is the complement (in τ) of A; also,   A   B 

corresponds to the logical relation A implies B. It is 
convenient to refer to the points of τ as “possible 
worlds” calling a proposition A “true in a possible 
world X” exactly if X ∈ A. τ itself then becomes the set 

of all possible worlds (or the “universe of discourse” in 
Zadeh’s terminology). Regarded as a proposition, τ is 
the true proposition – it is true in every possible world. 
Similarly, the complement of τ, the empty set φ, is the 
false proposition F, the proposition which is false in 
every possible world. Of course, F

c
 = τ and τ

 c
 = F. 

Two technical points: (a) Beware of assigning any 
ontological significance to the possible worlds: they 
arise only through the Stone representation theorem, 
the term “possible world” being just a figure of speech. 
(b) We note that in general only certain subsets of τ 

(the clopen subsets) denote by 1


and 0


the 

functions on τ that take the constant values 1 and 0 
respectively and, for a proposition denoted by a 
capital letter, A say, (possibly with subscript) we 
denote by the corresponding small letter a (with the 
same subscript) the characteristic function of A, i.e. 
the function that has value 1 if A is true and zero 

otherwise. In particular, t = 1


 and f = 0


 .Now we 

assume that Ch is the chance function corresponding 
to some agent. If the agent is rational this function 
must have certain properties. We shall state a number 
of these and justify them (A and B here denote 
arbitrary propositions): 
(1)   Ch (F) = 0,  Ch (τ) = 1. 

(2)   A   B implies Ch (A) ≤ Ch (B). 

These follow directly from definition 3, since 

F never holds and τ always holds, and if A   B then 

B holds whenever A holds. 
(3)           max , A B A B .h h h h hC A C B C C C     

The left inequality follows from (2). For the 
right inequality s ≥ Ch (A) and t ≥ Ch (B). Then for Rs 
(s + t) the agent will assert both A and B. He will then 
be obliged to pay at least ₹ 1 if either A or B holds (in 
fact ₹ 2 if they both hold). Since this is a greater 
obligation than that incurred by asserting A ∪ B we 

must have s + t ≥ Ch (A ∪ B). The right inequality in 

(3) now follows, since s and t are arbitrary. 
(4) If A ∪ B = τ then Ch (A) + Ch (B) ≥1. 

This follows immediately from (3) and (1); 
and as a particular case of (4) we have: 
(5)   Ch (A) + Ch (A

c
) ≥ 1. 

Let Ch (A) + Ch (A
c
) = 1. Then putting c = Ch 

(A) and using Definition 3, we see that k = c satisfies 
(ii) of Definition 2, and similarly applying Definition 3 to      
1 – c = Ch (A

c
) we find k = c satisfies (i) of definition 2. 

Together this means       c (A) exists and c (A) = Ch 
(A). Similarly, if, in Definition 2, A is replaced by A

c
, 

then k = 1 – c satisfies (ii) and also satisfies (i), which 
means c (A

c
) = 1 – c =     Ch (A

c
). 

Conversely, let c (A) exists. Then, Ch (A) ≤ c 
(A) (by definition2 (ii) and Definition (3) and similarly 
Ch (A

c
) ≤ c (A

c
). But, by the symmetry of Definition 2 

we have c (A) = 1 – c (A
c
). Thus, 

         cA 1 1 A Ac

h h h hC c A C A C C      , by (5), 

whence all inequalities become equalities and 

           c c

h h h hC A ,C A &C A +C A =1.cc A c A 

Therefore, we have the following theorem: 
Theorem 1 

A necessary and sufficient condition that c 
(A) exists is that Ch (A) + Ch (A

c
) = 1. If this condition 

holds then c (A) = Ch (A) and c (A
c
) = Ch (A

c
). 

One might hope that by listing a sufficient 
number of properties like (1) to (5) one could 
characterize a chance function in the sense that every 
function having the listed properties could be shown 
to be the chance function of some rational agent. The 
listed properties could then be used as axioms for a 
mathematical theory of chance functions in complete 
accord with the semantics given above. In fact, it turns 
out that one property suffices for this purpose; 
unfortunately, it is more complicated than those given 
so far, but it is equally easy to justify: 
(6)   Let n, r, s are non-negative integers and A0, 
A1, A2… An are propositions such that a1 + a2 + ……. 
+an ≥ r 1



+ s a0, where ai is the characteristic 

function of Ai and denotes the unit function. (what this 
means is that, without knowing which ones they might 
be, one can be sure that at least r – and if A0 holds 
then at least r + s – of the propositions, A1, A2, ……, 
An are bound to be true.) Then, 
Ch (a1) + ……….. + Ch (an) ≥ r + s Ch (a0) 

To justify (6) we observe that if the person 
pays the agent ₹ (Ch (a1) + … + Ch (an)) then he will 
assert the propositions A1, A2… An. In view of the 
hypothesis of the theorem this means that, when 
these propositions are tested, he will be obliged to 
pay me back ₹ r in any case and ₹ (r + s) if in fact A0 
is true. This shows that for a fee of ₹   𝐶ℎ Ai−r 

𝑛
1   the 

agent is willing (among other things) to commit 
himself to pay ₹ s if A0 is true; and it follows that            

   𝑠 Ch   A0  ≤   Ch   Ai −  rn
1 . 

Characterization of a Chance Function 

We have observed that the chance function 
of a rational agent has property (6). Here we shall 
show (corollary 1 to theorem 4) that every function 
with this property is the chance function of some 
rational agent. Anticipating this result, we define a 
chance function to be any function with this property. 
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Definition 4 

A chance function is a map Ch: Ɓ → [0, 1] 
with the property: if n, r, s are non-negative integers 
and A0, A1, A2… An are propositions such that a1 + a2 
+ ……. +an ≥ r 1



+ s a0 then Ch (A1) + ……….. + Ch 

(An) ≥ r + s Ch (A0). 
Theorem 2 

Every chance function has properties (1) to (5) of 
section “Properties of Chance Functions” viz: 

(a)  Ch (F) = 0, Ch (τ) = 1. 

(b)  Ch (A) ≤ Ch (B) whenever A   B. 

(c)            max A , B A B A B .h h h h hC C C C C     

(d)  If A ∪ B = τ then Ch (A) + Ch (B) ≥ 1. 

(e)  Ch (A) + Ch (A
c
) ≥ 1. 

Proof 

(a) Putting n = r = s = 1, a1 = τ, a0 = F, we get 
Ch (τ) ≥ 1 + Ch (F). 
Thus, Ch (τ) - Ch (F) ≥ 1 and the only 
possibility is 
Ch (τ) = 1; Ch (F) = 0. 

(b) Putting r = 0; n = s = 1; A1 = B, A0 = A we get  

the desired inequality. 
(c) The first inequality follows from (b) and for  

the second we put  n = 2, r = 0, s = 1, A1 = A, 
A2 = B, A0 = A ∪ B. 

             (d ) and (e) are corollaries of (c). 
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